Bokeh, что это?

Достаточно просто определить и описать резкость изображения, но значительно сложнее описать изображение находящееся не в фокусе. Для описания изображения, находящегося не в фокусе, применяется термин «Bokeh».

При съемке разными объективами в зоне не резкости получается разное изображение, которое может быть выглядеть лучше или хуже. «Лучше» или «Хуже» -это субъективные оценки людей, которые очень сложно как-то описать в виде конкретных величин. Принято считать, что японские объективы имеют Bokeh хуже, чем немецкие.

При съемке точки объекта находящегося в фокусе, фокусируются на пленке в виде точек.

Если точки снимаемого объекта находятся не в фокусе, то их изображение на пленке в идеальном случае будет в виде кругов, так как точка фокусировки будет находиться за или перед пленкой.

Теоретически изображение этих точек должно иметь форму круга, но практически из-за множества искажений в оптике, форма получается овальной или в виде многоугольника.

Различной также является передача светотонов внутри самого пятна, она может быть равномерной, со сдвигом к краям, с выраженным центром и т.д. Это является следствием различных аббераций и вид пятен изменяется взависимости расстояния от центра объектива.

Считается, что хороший «Bokeh» имеет объектив у которого пятно имеет форму круга и равномерное распределение тонов.

Оптические термины

f фокусное расстояние
h гиперфокальное расстояние h = f^2/(N*c)
M увеличение M = Si/So, или M = (Si-f)/f
N значение диафрагмы
Ne эффективное значение диафрагмы Ne = N*(1+M)
c максимально допустимый диаметр кружка нерезкости
So расстояние от передней главной фокальной плоскости до объекта
Sfar расстояние от передней главной фокальной плоскости до самой дальней резко отображаемой точки Sfar = h * So / (h — (So — f))
Sclose расстояние от передней главной фокальной плоскости до самой ближней резко отображаемой точки  Sclose = h * So / (h + (So — f))
Si расстояние от задней главной фокальной плоскости до плоскости пленки

Фокус,фокальная точка

fpoint1Фокальная точка это точка, в которой параллельные световые лучи от бесконечно далекого объекта сходятся после прохождения через объектив. Плоскость, перпендикулярная оптической оси, на которой находится эта точка, называется фокальной плоскостью. На этой плоскости, находящейся там, где расположена пленка в камере, объект виден резко и, как говорят, находится «в фокусе». При обычных фотообъективах, состоящих из нескольких линз, фокус можно отрегулировать таким образом, чтобы световые лучи от объекта, расположенного ближе, чем в «бесконечности», сходились в какой-то точке на фокальной плоскости.

Фокусное расстояние — это расстояние от главного фокуса до оптического центра.

Диафрагма — Фокусное расстояние объектива, деленное на диаметр входного зрачка (видимого со стороны объекта), равно относительному отверстию N (численному значению диафрагмы). Hадпись f/4 обозначает ¼ фокусного расстояния. Освещенность изображения на пленке обратно пропорциональна квадрату относительного отверстия. Глубина резкости увеличивается, но дифракция уменьшает резкость с увеличением значения диафрагмы.

Гиперфокальное расстояние — минимальное расстояние, на котором объекты изображаются резко, когда объектив сфокусирован на бесконечность h = f^2/(N*c)

Круг нерезкости

fpoint2Поскольку у всех объективов есть определенные аберрации и астигматизм, они не могут идеально сводить лучи от точки объекта, чтобы они образовывали истинную точку изображения (т.е. бесконечно малую точку с нулевой площадью). Другими словами, изображения образуются из комплекса точек, имеющих определенную площадь или размеры. Поскольку изображение становится менее резким по мере увеличения размеров этих точек, то эти точки называют «кругами нерезкости». Таким образом, один из факторов, определяющих качество объектива, это самая малая точка, которую он может образовать, или его «минимальный круг нерезкости». Максимально допустимый размер точки на изображении называется «допустимым кругом нерезкости». Для 35мм камер диаметр кружка нерезкости обычно принимают с=0.03мм или с=1/1720 от диагонали кадра, что дает 0.025 для 35мм пленки.

Угол поля зрения -площадь съемочного плана, выраженная как угол, который может быть воспроизведен объективом в виде резкого изображения. Номинальный диагональный угол зрения определяется как угол, образуемый воображаемыми линиями, связывающими вторую главную точку объектива с обоими концами диагонали изображения (43,2 мм). Данные объектива с электронной фокусировкой обычно включают горизонтальный (36 мм) угол зрения и вертикальный (24 мм) угол зрения.

fpoint3

Угол зрения и круг изображения можно рассчитать как 2*arctan (X/(2*f*(M+1))), где Х — ширина, высота или диагональ кадра, М — увеличение.

Минимальное и максимальное расстояния, на которых объекты изображаются резко могут быть расчитаны следующим образом:
Sclose = h * So / (h + (So — f))
Sfar = h * So / (h — (So — f))
Если знаменатель равен нулю или отрицателен , то Sfar = бесконечности.

Глубина резкости -расстояние от ближайшей резкой точки до самой дальней резкой точки.

frontdepth = So — Sclose
frontdepth = Ne*c/(M^2 * (1 + (So-f)/h))
frontdepth = Ne*c/(M^2 * (1 + (N*c)/(f*M)))

reardepth = Sfar — So
reardepth = Ne*c/(M^2 * (1 — (So-f)/h))
reardepth = Ne*c/(M^2 * (1 — (N*c)/(f*M)))

Задняя дистанция резкости равна бесконечности, если знаменатель равен нулю.

fpoint4

Аберрация — дефекты изображения, которые возникают из-за ограничений при проектировании и изготовлении объективов.

Изображение, cозданное идеальным фотообъективом, должно иметь следующие характеристики:

1) точка должна быть образована как точка;

2) плоскость (такая, как стена), перпендикулярная оптической оси, должна быть образована как плоскость;

3) изображение, образованное объективом, должно иметь такую же форму, как сам объект. Кроме того, с точки зрения выражения изображения объектив должен показать истинный цвет воспроизводимого объекта. Практически идеальная работа объектива возможна только в том случае, если используются лишь лучи света, поступающие в объектив вблизи оптической оси, и если свет монохроматический (свет только одной конкретной длинны волны). Однако в случае с обычным объективом, где большая апертура используется для получения достаточной яркости и объектив должен сводить вместе лучи, проходящие не только вблизи оптической оси, но от всех частей изображения, крайне трудно создать вышеупомянутые идеальные условия в силу существования следующих помех:

1)Поскольку большинство объективов построено лишь из линз со сферическими поверхностями, лучи света от одной точки объекта не отображаются на изображении в виде идеальной точки. (Проблема, которой невозможно избежать при сферических поверхностях.)

2)У различных типов света( т.е., у волн различной длины) разные положения фокальной точки.

3)Есть много требований, связанных с изменениями угла зрения ( в особенности в объективах с переменным фокусным расстоянием и в телефотообъективах).

Основные типы аберраций:

сферическая аберрация. Свет, проходящий через края линзы, фокусируется на ином расстоянии , чем свет, проходящий ближе к центру линзы,

fpoint5

кома. Расстояние от оптической оси, на котором отображается точка объекта, расположенного не на оси, изменяется с расстоянием от центра объектива,

fpoint6

кривизна поля изображения. Точки плоскости в пространстве предметов точно фокусируются на искривленной поверхности, а не на плоскости (пленки),

fpoint7

дисторсия (подушка или бочка). Изображение квадратного предмета имеет выпуклые или вогнутые стороны,

fpoint8

хроматическая аберация. Положение (вперед и назад) точного фокуса зависит от длины волны,

дополнительные цвета. Увеличение зависит от длины световой волны.

Действие всех аберраций (за исключением дисторсии и дополнительных цветов) можно уменьшить диафрагмированием. Кривизна поверхности не устраняется диафрагмированием.

Дифракция -явление, при котором световые волны попадают в район тени от объекта. В случае с фотообъективом экспозиция часто регулируется путем изменения размера диафрагмы объектива (апертуры), чтобы отрегулировать количество света, проходящего через объектив. Дифракция в фотообъективе происходит при малых диафрагмах, когда ребра диафрагмы мешают прохождению световых волн по прямой линии, в результате чего лучи света проходят близко к ребрам диафрагмы, огибая эти ребра на пути через диафрагму. Дифракция вызывает уменьшение контрастности и разрешающей способности изображения, в результате чего получается неконтрастное изображение. Хотя дифракция имеет тенденцию появляться тогда, когда диаметр диафрагмы меньше определенного размера, на самом деле она зависит не только от диаметра диафрагмы, но и от различных факторов, таких, как длинна волны света, фокусное расстояние и светосила объектива.

Фотосъемка в условиях низкой освещенности

Фотосъемка в условиях низкой освещенности аналогична фотосъемке при ярком свете, но имеет свои особенности, которые необходимо учитывать.

Низкой освещенностью можно считать такие условия, когда требуемая выдержка больше единицы деленной на фокусное расстояние объектива. Например для объектива с F=30 мм такая выдержка составляет 1/30 сек.Кстати большинство автоматических камер предлагают использовать вспышку исходя из этого правила. Считается, что при большей выдержке влияние вибрации камеры в руках фотографа оказывает значительное влияние на качество получаемого изображения. Такая ситуация встречается достаточно часто, особенно при использовании длиннофокусных объективов. Нижеприведенные способы помогут Вам как-то решить проблему съемки при низкой освещенности.

— Использование штатива позволяет производить съемку при любой выдержке, однако следует обращать внимание на конструкцию штатива, особенно на его головку. Очень часто головка изготавливается полностью из пластмассы и имеет люфты. От такого штатива не очень много пользы так как в этом случае камера вибрирует вместе с головкой штатива. При длительных выдержках также полезно использование электронного тросика, позволяющего не нажимать кнопку спуска. Следует отметить, что использование штатива не помешает и в условиях хорошей освещенности, если Вы предъявляете высокие требования к четкости изображения.

— Применение высокочувствительных пленок каким -то образом решает проблему, но и имеет свои отрицательные стороны. Повышение светочувствительности пленки сопровождается повышением контрастности и зернистости изображения, что во многих случаях незаметно, но во многих случаях и крайне нежелательно.

— Применение светосильной оптики позволяет снимать в тех же условиях с более короткой выдержкой. Так например применение объектива с диафрагмой 1:1,4 позволяет уменьшить выдержку на три ступени по отношению к объективу с диафрагмой 1:4, правда при этом произойдет уменьшение глубины резкости, которая определяется только фокусным расстоянием объектива и действующей диафрагмой. Следует также помнить, что объективы показывают наилучшие результаты при закрытии диафрагмы хотя бы на две ступени от максимально открытого значения.

При фотографировании с выдержками более секунды, необходимо при определении выдержки учитывать эффект несовместимости экспозиций, реально проявляющийся в этих случаях. Обычно, выдержка требует двойного увеличения, по отношению к показаниям экспонометра, если определенная величина ее находится в пределах 5 — 30 сек., и увеличения вчетверо, когда счет идет на минуты. Для разных типов пленки эти поправки разные, кроме того, у многих цветных фотопленок может нарушаться цветовой баланс. Производителями пленки как правило гарантируется цветопередача при выдержках до 10 секунд. Вообще при съемках в условиях очень низкой освещенности желательно делать брэкетинг, т.е. снимать несколько кадров с различной экспозицией, а затем выбрать один из них наиболее правильно проэкспонированный. Следует также учитывать, что камера рассчитывает экспозицию из расчета среднесерого результата, и делая снимок ночью Вы можете получить результат как при дневном освещении

Основы экспонометрии

В фотографии одним из основных моментов является выставление правильной экспозиции при съемке объекта. Это связано с тем , что для получения требуемого изображения на фотоносителе он должен получить определенное количество света. Если света недостаточно, то фотоматериал оказывается недоэкспонированным. При избытке света фотоматериал оказывается переэкспонированным.

Существует также проблема динамического диапазона фотоматериалов- все они имеют различную способность передачи полутонов между черными и белыми участками. Так например негативная пленка способна передать диапазон яркостей до 1:200, в то время как фотобумага только до 1:50. То есть не вся информация с пленки может быть перенесена на бумагу.

Основной задачей экспозиции является установление такой выдержки и диафрагмы, чтобы на фотоматериале проэкспонировался желаемый диапазон яркостей.

Величина экспозиции (EV) — часто употребляемое понятие, используемое для объяснения разницы экспозиций. Разница в экспозиции на 1 ступень (1 EV) соответствует изменению на +/- 1 деление диафрагмы, или, соответственно, уменьшению, либо увеличению выдержки в два раза.

Например, если по результатам замера освещенности некоего объекта камера установила экспозицию [1/125, f/8]и Вы решили изменить данное значение на +1 EV, то это может быть любая из следующих пар: [1/60, f/8], [1/90, f/6,7], [1/125, f/5.6] (при шаге в ½ EV). В любом из этих трех случаев количество света, попавшего через объектив на пленку, окажется вдвое больше исходного. В то же время, экспозиция [1/125, f/8] будет означать то же значение EV, что и [1/90, f/9.5], или [1/60, f/11]. Во всех этих случаях количество света, попавшего на пленку, будет одинаковым.

При экспонировании объектов с небольшим диапазоном яркостей, особых проблем не возникает так как все детали укладываются в диапазон пленки или фотобумаги. Сложнее ситуация, когда в кадре находятся объекты с очень большой разницей в уровне освещения, например темный лес на фоне светлого неба. В данном случае приходится чем-то жертвовать — либо допускать, что все тени будут черными, либо не передавать оттенки светлого. Иногда малый диапазон фотоматериалов используется для создания специальных эффектов. Например если снимать фигуру человека против света и экспонировать фотоматериал по наибольшей освещенности, то мы получим черную фигуру на светлом фоне.

В связи с тем, что человеческий глаз очень хорошо приспосабливается к окружающему освещению, достаточно сложно, не имея большого опыта выставить правильную экспозицию. Так например освещенность в комнате вечером нам кажется вполне достаточной, хотя она в сотни раз меньше чем днем. Это связано с тем, что человеческий зрачок в темноте расширяется и пропускает больше света.

Для измерения освещенности объекта созданы так называемые экспонометры для постоянного освещения и флэшметры для измерения импульсного освещения. Эти приборы могут отличаться по сложности и точности, но все основаны на измерении освещенности фотоэлементом преобразующим свет в электрический ток. Замерив освещенность, прибор показывает необходимые выдержку и диафрагму взависимости от светочуствительности используемого фотоматериала.

Замеры могут производиться либо в падающем, либо в отраженном свете. Замеры в падающем свете наиболее точные и дают правильную картину освещенности объекта, но для этого необходимо поместить экспонометр на место где находится объект и повернуть его в сторону камеры, что не всегда возможно. В большинстве случаев замеры производятся по отраженному свету, например встроенным в камеру экспонометром. В связи с этим возникает ряд сложностей. Все экспонометры настроены таким образом, что предполагают, что от объекта отражается 18% света (среднесерый объект) — это соответствует большинству стандартных ситуаций, однако если весь кадр занимает черный или белый фон, то на снимке в результате получится серый фон. В связи с этим фотограф в нестандартных ситуациях сам должен решать каким образом скорректировать предлагаемую экспонометром величину, чтобы получить желаемый результат. Для упрощения этой задачи в ряде камер существуют несколько видов замера:

— точечный замер позволяет измерить освещенность на маленьком сюжетно важном участке кадра и исходя из этого установить требуемую экспозицию.

— центральновзвешенный замер, при котором предполагается, что наиболее важным является центральна часть кадра и ей отдается приоритет, а края кадра имеют меньшее значение. При таком способе яркий источник света попавший в край кадра уже не оказывает значительного влияния на общую экспозицию.

— многозонный ( матричный замер), при котором фотоэлемент разбит на несколько зон и на основе получаемых с этих зон данных камера рассчитывает оптимальную экспозицию, основываясь на занесенную в нее фирмой производителем базу данных. С помощью такого замера камера может например определить контровый свет.

Лучшие русские блоги с фотографиями путешествий

korabl

Я люблю путешествовать и фотографировать интересные эпизоды во время своих путешествий. Такие фотки приятно показывать другим и смотреть самому холодными зимними вечерами.

Читать далее «Лучшие русские блоги с фотографиями путешествий»